Bioluminescence tomography with optimized optical parameters

نویسندگان

  • Weimin Han
  • Kamran Kazmi
  • Wenxiang Cong
  • Ge Wang
چکیده

Bioluminescence tomography (BLT) is a rapidly developing new area of molecular imaging. The goal of BLT is to produce a quantitative reconstruction of a bioluminescent source distribution within a living mouse from bioluminescent signals measured on the body surface of the mouse. While in most BLT studies so far the optical parameters of the key anatomical regions are assumed known from the literature or diffuse optical tomography (DOT), these parameters cannot be very accurate in general. In this paper, we propose and study a new BLT approach that optimizes optical parameters when an underlying bioluminescent source distribution is reconstructed to match the measured data. We prove the solution existence and the convergence of numerical methods. Also, we present numerical results to illustrate the utility of our approach and evaluate its performance. (Some figures in this article are in colour only in the electronic version)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region

Reconstruction algorithms are presented for two-step solutions of the bioluminescence tomography (BLT) and the fluorescence tomography (FT) problems. In the first step, a continuous wave (cw) diffuse optical tomography (DOT) algorithm is used to reconstruct the tissue optical properties assuming known anatomical information provided by x-ray computed tomography or other methods. Minimization pr...

متن کامل

An integrated solution and analysis of bioluminescence tomography and diffuse optical tomography.

While diffuse optical tomography (DOT) has been studied for years, bioluminescence tomography (BLT) is emerging as a promising optical molecular imaging tool. These two modalities have different goals. DOT is for reconstruction of optical parameters of a medium such as a breast from surface measurements induced by external sources. BLT is for reconstruction of a bioluminescent source distributi...

متن کامل

Spectrally resolved bioluminescence optical tomography.

Spectrally resolved bioluminescence optical tomography is an approach to recover images of luciferase activity within a volume using multiwavelength emission data from internal bioluminescence sources. The underlying problem of uniqueness associated with nonspectrally resolved intensity-based bioluminescence tomography is highlighted. Reconstructed images of bioluminescence are presented by usi...

متن کامل

Improvement of fluorescence-enhanced optical tomography with improved optical filtering and accurate model-based reconstruction algorithms.

The goal of preclinical fluorescence-enhanced optical tomography (FEOT) is to provide three-dimensional fluorophore distribution for a myriad of drug and disease discovery studies in small animals. Effective measurements, as well as fast and robust image reconstruction, are necessary for extensive applications. Compared to bioluminescence tomography (BLT), FEOT may result in improved image qual...

متن کامل

Bioluminescence tomography using eigenvectors expansion and iterative solution for the optimized permissible source region

A reconstruction algorithm for bioluminescence tomography (BLT) has been developed. The algorithm numerically calculates the Green's function at different wavelengths using the diffusion equation and finite element method. The optical properties used in calculating the Green's function are reconstructed using diffuse optical tomography (DOT) and assuming anatomical information is provided by x-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007